RetroArch
编码

根据 ECMA-404

(in Introduction) JSON text is a sequence of Unicode code points.

翻译:JSON 文本是 Unicode 码点的序列。

较早的 RFC4627 申明:

(in §3) JSON text SHALL be encoded in Unicode. The default encoding is UTF-8.

翻译:JSON 文本应该以 Unicode 编码。缺省的编码为 UTF-8。

(in §6) JSON may be represented using UTF-8, UTF-16, or UTF-32. When JSON is written in UTF-8, JSON is 8bit compatible. When JSON is written in UTF-16 or UTF-32, the binary content-transfer-encoding must be used.

翻译:JSON 可使用 UTF-8、UTF-16 或 UTF-18 表示。当 JSON 以 UTF-8 写入,该 JSON 是 8 位兼容的。当 JSON 以 UTF-16 或 UTF-32 写入,就必须使用二进制的内容传送编码。

RapidJSON 支持多种编码。它也能检查 JSON 的编码,以及在不同编码中进行转码。所有这些功能都是在内部实现,无需使用外部的程序库(如 ICU)。

Unicode

根据 Unicode 的官方网站: >Unicode 给每个字符提供了一个唯一的数字, 不论是什么平台、 不论是什么程序、 不论是什么语言。

这些唯一数字称为码点(code point),其范围介乎 0x00x10FFFF 之间。

Unicode Transformation Format

存储 Unicode 码点有多种编码方式。这些称为 Unicode 转换格式(Unicode Transformation Format, UTF)。RapidJSON 支持最常用的 UTF,包括:

  • UTF-8:8 位可变长度编码。它把一个码点映射至 1 至 4 个字节。
  • UTF-16:16 位可变长度编码。它把一个码点映射至 1 至 2 个 16 位编码单元(即 2 至 4 个字节)。
  • UTF-32:32 位固定长度编码。它直接把码点映射至单个 32 位编码单元(即 4 字节)。

对于 UTF-16 及 UTF-32 来说,字节序(endianness)是有影响的。在内存中,它们通常都是以该计算机的字节序来存储。然而,当要储存在文件中或在网上传输,我们需要指明字节序列的字节序,是小端(little endian, LE)还是大端(big-endian, BE)。

RapidJSON 通过 rapidjson/encodings.h 中的 struct 去提供各种编码:

namespace rapidjson {
template<typename CharType = char>
struct UTF8;
template<typename CharType = wchar_t>
struct UTF16;
template<typename CharType = wchar_t>
struct UTF16LE;
template<typename CharType = wchar_t>
struct UTF16BE;
template<typename CharType = unsigned>
struct UTF32;
template<typename CharType = unsigned>
struct UTF32LE;
template<typename CharType = unsigned>
struct UTF32BE;
} // namespace rapidjson

对于在内存中的文本,我们正常会使用 UTF8UTF16UTF32。对于处理经过 I/O 的文本,我们可使用 UTF8UTF16LEUTF16BEUTF32LEUTF32BE

当使用 DOM 风格的 API,GenericValue<Encoding>GenericDocument<Encoding> 里的 Encoding 模板参数是用于指明内存中存储的 JSON 字符串使用哪种编码。因此通常我们会在此参数中使用 UTF8UTF16UTF32。如何选择,视乎应用软件所使用的操作系统及其他程序库。例如,Windows API 使用 UTF-16 表示 Unicode 字符,而多数的 Linux 发行版本及应用软件则更喜欢 UTF-8。

使用 UTF-16 的 DOM 声明例子:

typedef GenericDocument<UTF16<> > WDocument;
typedef GenericValue<UTF16<> > WValue;

可以在 DOM's Encoding 一节看到更详细的使用例子。

Character Type

从之前的声明中可以看到,每个编码都有一个 CharType 模板参数。这可能比较容易混淆,实际上,每个 CharType 存储一个编码单元,而不是一个字符(码点)。如之前所谈及,在 UTF-8 中一个码点可能会编码成 1 至 4 个编码单元。

对于 UTF16(LE|BE)UTF32(LE|BE) 来说,CharType 必须分别是一个至少 2 及 4 字节的整数类型。

注意 C++11 新添了 char16_tchar32_t 类型,也可分别用于 UTF16UTF32

AutoUTF

上述所介绍的编码都是在编译期静态挷定的。换句话说,使用者必须知道内存或流之中使用了哪种编码。然而,有时候我们可能需要读写不同编码的文件,而且这些编码需要在运行时才能决定。

AutoUTF 是为此而设计的编码。它根据输入或输出流来选择使用哪种编码。目前它应该与 EncodedInputStreamEncodedOutputStream 结合使用。

ASCII

虽然 JSON 标准并未提及 ASCII,有时候我们希望写入 7 位的 ASCII JSON,以供未能处理 UTF-8 的应用程序使用。由于任 JSON 都可以把 Unicode 字符表示为 \uXXXX 转义序列,JSON 总是可用 ASCII 来编码。

以下的例子把 UTF-8 的 DOM 写成 ASCII 的 JSON:

using namespace rapidjson;
Document d; // UTF8<>
// ...
d.Accept(writer);
std::cout << buffer.GetString();

ASCII 可用于输入流。当输入流包含大于 127 的字节,就会导致 kParseErrorStringInvalidEncoding 错误。

ASCII * 不能 * 用于内存(Document 的编码,或 Reader 的目标编码),因为它不能表示 Unicode 码点。

Validation & Transcoding

当 RapidJSON 解析一个 JSON 时,它能校验输入 JSON,判断它是否所标明编码的合法序列。要开启此选项,请把 kParseValidateEncodingFlag 加入 parseFlags 模板参数。

若输入编码和输出编码并不相同,ReaderWriter 会算把文本转码。在这种情况下,并不需要 kParseValidateEncodingFlag,因为它必须解码输入序列。若序列不能被解码,它必然是不合法的。

Transcoder

虽然 RapidJSON 的编码功能是为 JSON 解析/生成而设计,使用者也可以“滥用”它们来为非 JSON 字符串转码。

以下的例子把 UTF-8 字符串转码成 UTF-16:

using namespace rapidjson;
const char* s = "..."; // UTF-8 string
bool hasError = false;
while (source.Peek() != '\0')
if (!Transcoder<UTF8<>, UTF16<> >::Transcode(source, target)) {
hasError = true;
break;
}
if (!hasError) {
const wchar_t* t = target.GetString();
// ...
}

你也可以用 AutoUTF 及对应的流来在运行时设置内源/目的之编码。